个人简介:
周然 女,博士,副教授,硕士生导师,省级人才,毕业于华中科技大学,获得博士学位,加拿大Western University访问学者。主要从事图像处理和人工智能领域的相关研究工作,在IEEE Transactions on Medical Imaging、IEEE Journal of Biomedical and Health Informatics等国内外重要学术刊物和会议上发表学术论文17篇,申请发明专利5项;主持国家自然科学基金青年项目1项、湖北省自然科学基金基金1项、湖北工业大学博士启动基金1项,参与国家自然科学基金1项、高等学校博士学科点专项科研基金1项、国家级和省部级开放基金项目3项等;获湖北工业大学青年教师教学竞赛三等奖;指导学生在“互联网+”、计算计设计大赛等竞赛获国家级、省级、校级奖励多项。
招生信息
1.招生学科:计算机科学与技术、电子信息
2.研究方向:人工智能、深度学习、医学图像处理
3.招生年度:2023
科研项目
1. 混合弱监督场景下颈动脉三维超声斑块识别的关键技术研究,国家自然科学基金青年项目,2023-2025,主持;
2. 面向少量标签样本的颈动脉斑块超声图像分类算法研究,湖北省自然科学基金,2021-2023,主持;
成果获奖
1. Ran Zhou, Fumin Guo, M Reza Azarpazhooh, Samineh Hashemi, Xinyao Cheng, J David Spence, Mingyue Ding, Aaron Fenster. Deep learning-based measurement of total plaque area in B-mode ultrasound images [J]. IEEE Journal of Biomedical and Health Informatics, 2021, 25 (8): 2967-2977.
2. Ran Zhou, M Reza Azarpazhooh, J David Spence, Samineh Hashemi, Wei Ma, Xinyao Cheng, Haitao Gan, Mingyue Ding, Aaron Fenster. Deep Learning-Based Carotid Plaque Segmentation from B-Mode Ultrasound Images [J]. Ultrasound in Medicine & Biology, 2021, 47 (9): 2723-2733.
3. Ran Zhou, Fumin Guo, M Reza Azarpazhooh, J David Spence, Eranga Ukwatta, Mingyue Ding, Aaron Fenster. A voxel-based fully convolution network and continuous max-flow for carotid vessel-wall-volume segmentation from 3D ultrasound images [J]. IEEE Transactions on Medical Imaging, 2020, 39 (9): 2844-2855.
4. Ran Zhou, Yongkang Luo, Aaron Fenster, John David Spence, Mingyue Ding. Fractal dimension based carotid plaque characterization from three-dimensional ultrasound images [J]. Medical & Biological Engineering & Computing, 2019, 57 (1): 135-146.
5. Ran Zhou, Aaron Fenster, Yujiao Xia, J David Spence, Mingyue Ding. Deep learning‐based carotid media‐adventitia and lumen‐intima boundary segmentation from three‐dimensional ultrasound images [J]. Medical Physics, 2019, 46 (7): 3180-3193.
6. Ran Zhou, Wei Ma, Aaron Fenster, Mingyue Ding. U-Net based automatic carotid plaque segmentation from 3D ultrasound images; proceedings of the SPIE Medical Imaging 2019: Computer-Aided Diagnosis [C], 2019, 10950: 1119-1125.